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This work is devoted to the study of steady states in two hydrodynamic traffic models. The first model to be
analyzed is the Kerner-Konhäuser model and the second is called kinetic Navier-Stokes model. The study is
made through an analysis in the phase space. Taking into account the analogy with the description of the
one-particle motion, we can give a sensible meaning to the dynamical functions which determine the stability
of the steady states. Lastly, we constructed the phase plane paths in several cases for both models.
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I. INTRODUCTION

Traffic flow models constitute a tool to study the complex
behavior arising in different traffic scenarios. There exists in
the literature an enormous quantity of models which repre-
sent some aspects of the problem and their origin goes from
microscopic to macroscopic approaches. Recently some au-
thors have reviewed the state of arts concerning both points
of view �1–6�.

Here we will focus our attention on two macroscopic
models: the Kerner-Konhäuser macroscopic model �7–9�,
which is a phenomenological model proposed in close anal-
ogy to a Navier-Stokes �N-S� viscous fluid. On the other
hand, we will consider a macroscopic model obtained from
the kinetic Paveri-Fontana equation �10�; both models con-
tain two equations to describe a traffic scenario and they
share the structure.

The Kerner-Konhäuser model �7,9� has been taken as a
prototype of hydrodynamic models because it contains the
main features of the problem such as the fundamental dia-
gram Ve��� and the values of the relaxation time �, which are
taken according to certain experimental data. On the other
hand, the velocity variance �0 and the viscosity �0 were
chosen in a somewhat arbitrary way. It is also known that the
simulation of this model under several initial and periodic
boundary conditions gives results in which we can see a
standard behavior of traffic flow. This model has some prob-
lems for certain values of the parameters producing densities
bigger than the maximum and negative velocities as were
noted in Ref. �9�. In contrast, the kinetic model �10� is based
on the Paveri-Fontana kinetic equation �11� with a model for
the drivers’ desired average velocity; such a model can be
classified as a model for aggressive drivers because the de-
sired velocity is bigger than the actual velocity. This model
shares the structure with the Kerner-Konhäuser model in the
sense that the traffic pressure contains the velocity variance
and a kind of viscosity. The simulation results of this model
also reproduce the main characteristics of traffic flow as has
been discussed in the literature. In both models the vehicle
density and the average velocity are taken as relevant vari-
ables for vehicles in a one-lane highway with no ramps. The
equation of motion for the density is the same and it is given
by a conservation equation, while the equation for the aver-
age velocity is a balance equation in which the source term
will be specified for each model.

First of all, we know that both models admit a solution for
a homogeneous steady state characterized by the values of
the density and the corresponding velocity, given through the
fundamental diagram. However, the observation of simula-
tion results in both models shows that a perturbation from
this state creates an inhomogeneous profile which is steady,
and we wonder if it is possible the study of such kind of
states in a systematic way. This question has been raised in
the literature in the context of the study of cluster formation
in traffic flow �8�. In particular, the authors in Ref. �8� intro-
duced the methodology appropriate to go from traffic model
equations, which are partial differential equations, to ordi-
nary equations by means of a change in the reference frame.
Later, Lee et al. �12� implemented the scheme to study the
steady states in a macroscopic model which comes from an
optimal velocity model. In both cases, it is possible to make
an analogy with the one-dimensional motion of a particle in
a potential field and in the presence of a Stokes friction force.
Taking advantage of this analogy, the traffic model equations
can be studied with a sensible physical meaning and the
theory of dynamical systems can also be used to interpret the
results. On the other hand, it is known that the traffic dynam-
ics presents general characteristics such as the presence of
the free flow states, synchronized flow, and wide traffic jams
�13�. Up to date, all these traffic states are not completely
understood, and we think that a first step along these lines is
the systematic and complete understanding of the states in
the neighborhood of the homogeneous steady states. The
analysis in phase space provides us with tools to achieve this
goal. In particular, the general characteristics of traffic mod-
els, such as their nonlinearity and the presence of dissipation,
indicate that this kind of analysis can give a better under-
standing of the dynamics �14�.

The purpose of this work is to do a systematic study of the
steady states of the Kerner-Kornhäuser and the kinetic mod-
els. To begin it, we will consider the problem as seen from a
moving reference frame which travels with a constant veloc-
ity −Vg and look for the steady states in this new reference
system �8,12�. This change in the reference frame allows us
to obtain ordinary differential equations which can be studied
in the phase space and identify several steady states as well
as the orbits in the system. In Sec. II, we first present a
general scheme for our study. Section III will be devoted to
the Kerner-Konhäuser model, whereas in Sec. IV we will
specify the characteristics of the kinetic Navier-Stokes
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model. In Sec. V we show some examples of the found orbits
in both models and lastly we give some concluding remarks.

II. GENERAL APPROACH

Let us consider in a general way the equations of motion
for typical macroscopic traffic models. This means that the
analysis will be devoted to models in which we can find a set
of equations for averaged quantities such as the density
��x , t� and the average velocity V�x , t� of the flow. Some of
these models come from a phenomenological approach �7,9�;
however, some others have their origin in a kinetic equation
�15–17�. The common characteristic of these models is that
they share the continuity equation for the density and the
structure of the equation of motion for the velocity. Some of
them consider three or more equations �9,16,17�, but in this
work we will only take models which take the density and
the average velocity as relevant variables.

To be precise, let us consider a highway with no ramps in
such a way that the total number of vehicles remains con-
stant. The equations for the models considered in this work
�7,9� can be written in the so-called conservative form as
follows:

�u

�t
+

�F

�x
= S , �1�

where

u = � �

�V
�, F�u,

�u

�x
� = � �V

�V2 + P � . �2�

The traffic pressure P to be considered in this work can be
written as

P = �����,V� − ���,V�
�V

�x
, �3�

where the quantity �� is the velocity variance which can be
a function of the density and the average velocity. The quan-
tity � plays the role of a viscosity and it can also be a func-
tion of the averaged variables. On the other hand, the source
term S�u , �u

�x � in Eq. �1� is a function of the density, the av-
erage velocity, and the velocity gradient. In fact, the source
term in the continuity equation for the density vanishes as a
consequence of the system conditions, particularly due to the
absence of ramps. This means that the density satisfies a
conservation equation,

��

�t
+

�

�x
��V� = 0. �4�

Now, let us consider the case where we see the dynamics
of the system in a reference frame moving with a constant
velocity −Vg, in such a way that we make the following
change in variable:

� = x + Vgt , �5�

where Vg is constant. In this case Eq. �4� can be immediately
integrated in such a way that

��Vg + V� = Qg, � =
Qg

�Vg + V�
, �6�

where Qg is a constant. Now, the general expression for the
traffic pressure �3� is written as

P =
Qg���V;Vg,Qg�

Vg + V
− ��V;Vg,Qg�

dV

d�
. �7�

The direct substitution of Eq. �7� in the equation of motion
with the change in variable given in Eq. �5� can be written as
a second-order ordinary differential equation which has the
following general structure:

M�V;Vg,Qg�
d2V

d�2 + D1�V;Vg,Qg�
dV

d�
+ D2�V;Vg,Qg��dV

d�
�2

= F�V;Vg,Qg� . �8�

The quantities M ,D1 ,D2 ,F are functions of �V ;Vg ,Qg�
which will be specified for each model. In all cases, V is the
unknown variable while Vg and Qg are constant parameters.
To each Vg and Qg corresponds a solution V���. The equation
just obtained, as it is given in Eq. �8�, can be interpreted as
the equation of motion for a particle with mass M, moving
in a field of force F and in the presence of friction terms
measured by the coefficients D1 ,D2. In fact, the field of
force can be derived from a kind of potential in such a way
that F=− dU

dV , where the potential U is also a function of the
quantities �V ;Vg ,Qg�. The points where F=0 represent criti-
cal points of the potential U�V ;Vg ,Qg� and the sign of the
derivative

dF�V;Vg,Qg�
dV =−K at the critical points will tell us if

the potential has a maximum or a minimum. In fact, in the
model worked out by Lee and co-workers �12�, they consid-
ered that the potential has a camel’s back shape in such a
way that there are three extremal points. The stability char-
acteristics of these points determine the kind of traffic dy-
namics.

We note that in this work we will consider a term propor-
tional to the square of the derivative in the velocity, which is
absent in the work of Lee et al. �12�. In fact, we will consider
it because in the second model we will study here �10�, a
term like this one appears in a natural way. From the point of
view of particle dynamics, this term is equivalent to consid-
ering a friction going with the square of the velocity besides
the usual linear Stokes term.

A qualitative description can be made in this point; how-
ever, at least for the case where the potential has a camel’s
back structure, such a discussion was made in Ref. �12�. We
notice that in Ref. �12�, the values of Vg ,Qg are much bigger
than the ones we will use in this work. This means that we
are working in a different region in the phase space, as we
will emphasize in Sec. V.

To analyze the system let us first define dimensionless
variables

z = �max�, v =
V

Vmax
, vg =

Vg

Vmax
, qg =

Qg

�maxVmax
. �9�

Now Eq. �8� can be written as
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d2v
dz2 − �1�v;vg,qg�

dv
dz

− �2�v;vg,qg��dv
dz
�2

= f�v;vg,qg� ,

�10�

where

− �1�v;vg,qg� =
D1

M ,

− �2�v;vg,qg� =
D2

M ,

and

f�v;vg,qg� = F
M .

Notice that v is the variable that depends on z, and vg ,qg are
the dimensionless constant parameters.

On the other hand, Eq. �10� can be transformed in a sys-
tem of two first-order equations when we define the phase
space �v ,y� and y= dv

dz , then

dv
dz

= f1, f1 = y ,

dy

dz
= f2, f2 = �1y + �2y2 + f . �11�

Here �1 ,�2 , f depend on the velocity v, the constant param-
eters �vg ,qg�, and the specific quantities in each model. The
properties of the dynamical system defined in Eqs. �11� are
determined by the functions f1 , f2, and it is clear that the
critical points can be calculated from

f1�vc;vg,qg� = 0,

f2�vc;vg,qg� = 0, �12�

where vc corresponds to the averaged dimensionless velocity
at the critical points. The values for this velocity must be in
the range 0	vc	1, for the chosen values of −1	vg	1 and
−1	qg	1. From Eqs. �11� it is clear that the critical points
satisfy the equation f�vc ;vg ,qg�=0 in such a way that their
coordinates in phase space are given by Pc= �vc ,0�. We must
note that there can be several critical points because the
quantity f�vc ;vg ,qg� can have several roots.

The stability characteristics of the flow can be determined
by the linearized dynamical system around each critical
point, and for that we need the Jacobian matrix, which is
given as

J�Pc� = ��
� f1

�v
�

Pc

� � f1

�y
�

Pc

� � f2

�v
�

Pc

� � f2

�y
�

Pc

� = �a11�Pc� a12�Pc�
a21�Pc� a22�Pc�

� .

�13�

A direct calculation shows that a11=0, a12=1, a21= � df
dv �vc

=−K�vc ;vg ,qg�, and a22=�1�vc ;vg ,qg�.
In fact, we need to calculate the eigenvalues in the Jaco-

bian matrix at each critical point and they are given as

L
 = 1
2 ��1�vc;vg,qg� 
 	��1�vc;vg,qg��2 − 4K�vc;vg,qg�� .

�14�

In order to answer the question about the local stability of the
nonlinear system, we apply the Hartman-Gorban theorem
that states that critical points, whose corresponding Jacobian
matrix has eigenvalues with real part different from zero,
have the same behavior as the critical points of the linearized
system. These critical points are called hyperbolic points
�18,19�.

It is well known that when the real part of the eigenvalues
is negative we have stability; otherwise, the dynamical sys-
tem is unstable near the critical point. Notice that if
�1�vc ;vg ,qg��0 and K�vc ;vg ,qg��0 the critical points are
hyperbolic and stable. When the eigenvalues are real we
have a stable node and in the case they are complex we will
obtain a stable spiral. In the case where we obtain eigenval-
ues with negative and positive real parts, the point is said to
be a saddle point. It is worth noticing that the linear stability
analysis can give us only a qualitative picture near the criti-
cal points. Besides the nonlinear term with respect to y in the
equation ��2� does not play a role in the linearized analysis.
It is not the case for the complete simulations or the con-
struction of orbits in the phase space in the nonlinear case;
there, the terms giving place to �2 are relevant. Their order
of magnitude is the same as the linear contributions.

Coming back to the analogy with the one-particle motion
description, notice that stable nodes correspond to minimum
points of the potential. We can also give a physical interpre-
tation of coefficient �1 in terms of the total energy. For that,
we will called it the friction linear term, it corresponds to
�1y, because it is linear with respect to y, while �2y2 will be
called the nonlinear friction term. We first note that, in the
one-particle analogy, the kinetic energy per unit mass of the
particle is given by y2

2 , then if we multiply Eq. �10� by dv
dz ,

and recall that the force f is derivable from the potential U,
we obtain

d

dz
� y2

2
+ U� = �1y2 + �2y3. �15�

In the right-hand side of Eq. �15� the terms �1y2 and �2y3

measure the size of the rate of the total energy, then their sign
will tell us if there exists dissipation of the total energy in the
mechanical system. The first term represented by �1y2 which
is positive when the coefficient �1�0 tells us that in this
case this term produces energy, whereas when �1�0 there is
dissipation. On the other hand, the contribution of the term
�2y3 depends on the sign of both factors �2 and y3. In the
case where in the traffic dynamics only the linear friction
term appears, it is the sign of �1 the element which deter-
mines dissipation or feedback in the energy. It should be
advisable that dissipation of energy and stability around a
critical point be consistent with the energy considerations.
Then, when the value of the parameter qg or vg makes an
unstable critical point becomes stable, the energy must be
dissipated; otherwise, when a stable critical point becomes
unstable the system receives enough energy to escape.
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The second step in the analysis is done with the complete
solution of the ordinary differential equations which consti-
tute the dynamical system; in this case, such a set is given in
Eqs. �11�. The solution of this set of equations is numerical
and is given in phase space �v ,y�. Obviously, it cannot be
done in general and we must go to each specific model.

III. KERNER-KONHÄUSER MODEL

The Kerner-Konhäuser model considers two equations to
describe the system: the continuity equation �Eq. �4�� and an
equation for the velocity in which the traffic pressure is pro-
posed in analogy with viscous fluid hydrodynamics,

P = ��0 − �0
�V

�x
. �16�

Hence, the equation describing the time evolution of the ve-
locity is given as

�V

�t
+ V

�V

�x
= −

�0

�

��

�x
+

�0

�

�2V

�x2 +
1

�
�Ve��� − V� , �17�

where both �0 ,�0 and the individual relaxation time � are
constants. This model is a phenomenological one, since it
was proposed in analogy with the Navier-Stokes equation in
a fluid characterized by the viscosity �0 and a kind of hydro-
static pressure which is measured through the first term in
the traffic pressure. The numerical values of these parameters
are somewhat arbitrary, but it is well known that in this case
the equations of motion can be simulated and they give a
convergent solution with a well-behaved profile in the den-
sity and the velocity, at least in some regions of the values of
the parameters. The fundamental diagram Ve��� which gives
the relation between the so-called equilibrium velocity and
the density is also given and it is taken from experimental
data �7�.

TABLE I. Examples of critical values in the Kerner-Konhäuser model. The third row in each cell gives
the stability according to the linear analysis around the critical points. The fourth row gives the characteristics
of the potential defined through the force in the equation of motion and the fifth row gives the sign of the
friction coefficient in analogy with the one-particle motion. Empty cells imply that there is no value for the
critical velocity.

qg Qg vg Vg v0 V0 v1 V1 v2 V2

0.0952 0.1 4.57
10−6 0.1789 0.9327

1600 veh/h 12 km/h 5.84
10−4 km /h 21.46 km/h 111.92 km/h

saddle point stable spiral saddle point

maximum minimum maximum

�1�0 �1�0 �1�0

0.15 0.21 4.3
10−4 0.2783 0.8624

2520 veh/h 25.2 km/h 0.052 km/h 33.4 km/h 103.49 km/h

saddle point unstable spiral saddle point

maximum minimum maximum

�1�0 �1�0 �1�0

0.0714 −0.1666 0.4345 0.9315

1200 veh/h −20 km /h 52.14 km/h 107.42 km/h

stable spiral saddle point

minimum maximum

�1�0 �1�0

0.0952 −0.11 0.486 0.8952

1600 veh/h −13.2 km /h 58.32 km/h 107.48 km/h

unstable spiral saddle point

minimum maximum

�1�0 �1�0

0.1074 −0.1666 0.7424 0.7529

1804 veh/h −20 km /h 89.08 km/h 90.34 km/h

unstable node saddle point

minimum maximum

�1�0 �1�0
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We now apply the results in Sec. II to the Kerner-
Konhäuser model, where we identify the source in Eq. �1� as

S�u� = � 0

1

�
�Ve�V� − V� � . �18�

With the change in variable proposed in Eq. �5�, the sub-
stitution of the density according to Eq. �6� and taking into
account the definition of the dimensionless variables �9�, we
obtain

d2v
dz2 − a
1 −

�0

�v + vg�2�dv
dz

+ b�ve�v� − v
v + vg

� = 0, �19�

where we have defined some dimensionless quantities spe-
cial for this model as

ve�v� =
Ve�V�
Vmax

, �0 =
�0

Vmax
2 , a =

Qg

�max�0
,

b =
Qg

�max
2 �0�Vmax

. �20�

Now, the corresponding dynamical system can be written as

dv
dz

= y ,

dy

dz
= a
1 −

�0

�v + vg�2�y − b�ve�v� − v
v + vg

� . �21�

Comparing with Eq. �11� we obtain

f1 = y, f2 = a
1 −
�0

�v + vg�2�y − b�ve�v� − v
v + vg

� , �22�

and the coordinates of the critical points will be given as
�vc ,0� such that

ve�vc� − vc = 0. �23�

It is a direct calculation to show that the elements of the
Jacobian matrix �Eq. �13�� depend on the parameters of the
model and the solution vc which determines the coordinates
of the critical points; hence,

�1�Pc� = a
1 −
�0

�vc + vg�2� ,

− K�Pc� =
b

�vc + vg�
1 − �dve

dv �
vc

� . �24�

Obviously an explicit calculation requires numerical val-
ues for all parameters and the fundamental diagram; in this
case, we have taken the following values �9�:

�max = 140 veh/km, Vmax = 120 km/h, � = 30 s,

�0 = �45 km/h�2, �0 = 600 km/h,

Ve

Vmax
= − 3.72 
 10−6 + 
1 + exp� �

�max
− 0.25

0.06
��−1

,

�25�

where the density � is measured in vehicles/km �veh/km�.
Also, the values for qg and vg must be given; however, they
can be positive or negative provided the density is positive in
Eq. �6�. For each pair of values �qg ,vg� we will obtain dif-
ferent critical points.

Table I represents only some values for critical points
corresponding to certain values of the parameters qg and vg;
however, we can notice some stability characteristics of the
model. When the quantities qg ,vg are positive, we have three
to none critical points depending on the values of these pa-
rameters, while for qg�0 and vg�0 we obtained two to
none critical points. When qg�0 �not shown in Table I� we
just obtained one critical point vc� �vg� which corresponds to
a stable spiral. In the first example we obtain three critical
points: at the saddle points v0 and v2 the potential attains a
maximum value, whereas the point v1 is stable. In the second
case, the minimum of the potential v1 is an unstable spiral
and points v0 ,v2 are saddle points where the potential attains
a maximum value. The last three data correspond to qg�0
and vg�0; for these particular cases, we have two critical
points. Point v2 corresponds to a maximum in the potential
and it is a saddle point. The critical point in v1 is a minimum
in the potential, but its stability characteristics changes ac-
cording to the values of vg ,qg. Notice that the stability region
is small; a slight change in the parameters qg ,vg causes that
the stable point becomes unstable.

From these data it is possible to have a qualitative analy-
sis as it was done by Lee et al. �12�. To go deeper in the
analysis it is necessary to construct the orbits in the phase
space �v ,y�. The construction of orbits is based on the nu-
merical solution for the complete dynamical system, and we
will give here some examples. In Fig. 1 we have the orbits
for the values in the first row in Table I. In this case there is
a heteroclinic path that links v0 to v1; on the other hand,
there is neither a heteroclinic orbit between the critical points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

v

y

FIG. 1. �Color online� Orbits in phase plane for the Kerner-
Konhäuser model for qg=0.0952 and vg=0.1. The values corre-
sponding to the critical points are in the first row of Table I. There
is a heteroclinic path that links the first to the second critical point,
and the dashed line corresponds to the separatrix.
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v0→v2 nor v1→v2. We notice that the existence of the het-
eroclinic orbit linking v0 and v1 means that the velocity as a
function of the variable z goes from a homogeneous steady
state characterized by v0 to a new homogeneous steady state
v1, and the corresponding solution corresponds to a nonho-
mogeneous profile. This solution starts in v0, has a small
oscillation, and ends in v1. Figure 1 shows in a clear way the
stability characteristics of points, v1 as a stable spiral and we
have a saddle for v2. Figure 2 shows the orbits for the second
row of Table I, although we have three critical points: v0 and
v2 are saddle points, whereas v1 is an unstable node. There is
a heteroclinic trajectory linking v1→v2. In this case the pres-
ence of the heteroclinic orbit tells us that the system goes
from the homogeneous steady state characterized by v1 to a
new state v2; however, the inhomogeneous velocity profile as
a function of variable z oscillates and then goes smoothly to
v2.

In Fig. 3 we show for qg=0.0952 �1600 veh/h� and vg
=0.2 �24 km/h� a case where there is only one critical point
at v1=0.914 59 �109 km/h� which is a saddle. In Fig. 4 we
have the orbits in the phase plane in the case where we have
taken qg�0 and vg�0. The first observation in this case is
that we have a discontinuity in the force f and the friction
coefficient �1 for v= �vg�; however, when v� �vg� we obtain

two critical points v1 and v2. Now there can be a heteroclinic
orbit v2→v1, corresponding to a velocity profile which goes
smoothly from v2, then oscillates, and ends in v1. Such a
profile corresponds to an inhomogeneous solution v vs z.

In Fig. 5 it is shown the phase plane for vg=−0.1 �
−12 km /h� and qg=0.0952 �1600 veh/h�. The most remark-
able property in this case is that it seems to appear a limit
cycle surrounding the stable critical point v1. In this case the
inhomogeneous profile corresponding to the limit cycle be-
comes periodic. The orbits inside the limit cycle approach
the stable critical point and the orbits outside the limit cycle
go far apart. Notice that a small change in vg causes a change
in the stability region, as it shown in example 4 of Table I:
for vg=−0.11, v1 becomes unstable because �1�v1� becomes
positive.

In Fig. 6 we see an example of the orbits when qg�0,
vg�0, and the limit cycle is not present. In this case there
are two critical points very close to each other �see the fifth
row of Table I�; v2 is a saddle point and although the poten-
tial attains its minimum value at v1, it is an unstable node
due to the fact that �1�0.

These examples have shown the orbits in different cases
and we can compare with the qualitative analysis done by
Lee et al. �12�, where they identified several regions in the
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FIG. 2. �Color online� Orbits in phase plane for qg=0.15 and
vg=0.21. There are three unstable critical points, whose values are
listed in the second row of Table I. There is a heteroclinic orbit that
links the second to the third critical point, and the dashed orbit
corresponds to the separatrix.
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FIG. 3. �Color online� Orbits in phase plane for qg=0.0952 and
vg=0.2. There is only one critical point which is a saddle.
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FIG. 4. �Color online� Orbits in phase plane for qg=0.0714 and
vg=−0.1666. There are two critical points, whose values are listed
in the third row of Table I; the first one is a stable spiral while the
other is a saddle.
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FIG. 5. �Color online� Orbits in the phase space for qg

=0.0952 and vg=−0.1. There are two critical points. The first one is
stable while the other is a saddle point.
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phase plane according to the characteristics of the orbits. We
notice that in the analysis of Lee et al. �12� they only con-
sidered the cases where vg�0. It is worth to notice that vg
can be identified with the velocity of propagation of a cluster
�see �8��, which can propagate upstream or downstream, so
the case vg�0 has physical meaning. Obviously it is pos-
sible to give more examples; however, the dependence of
orbits with the values in qg and vg makes an exhaustive
search, somewhat cumbersome.

IV. KINETIC NAVIER-STOKES-LIKE MODEL

After the discussion of the phenomenological model in-
troduced by Kerner and Konhäuser �7�, we will study a
model called kinetic N-S �10�. This model has its origin in
the Paveri-Fontana kinetic equation �11� where a special
form for the averaged desired velocity of drivers is intro-
duced. Then the exact solution for the homogeneous steady
state is obtained and the maximization of the informational
entropy allowed us the construction of a local distribution
function in which the local density and the velocity appear in
an explicit way. This distribution function was the basis to
develop a perturbation method to find the traffic pressure in
terms of a collective relaxation time. As a result it was ob-
tained an expression for the traffic pressure with the structure
of Eq. �3� where ���� ,V�= V2

� and the viscosity ��� ,V�
= �V2��

� . The parameter � is a constant at the low-density re-
gion, with a value which can be obtained from experimental
data �20�. In fact, 1

� is the so-called prefactor of the variance.
It is a standard procedure to obtain, from the Paveri-Fontana
equation, the time evolution for the density and the velocity.
In fact, the density satisfies the continuity equation �4� and
the velocity equation can be written as

�V

�t
+ V

�V

�x
= −

1

�

�P
�x

+
1

�
�W − V� − �1 − p�P , �26�

where p is the probability of overtaken and the traffic pres-
sure is now given as

P =
�V2

�
�1 − ��

�V

�x
� . �27�

In Eq. �26�, W=�V is the averaged desired velocity of driv-
ers, and in this model it is proposed with a parameter �
which measures the average aggressiveness of drivers. The
quantity � in Eq. �27� is a dimensionless quantity determined
by the experimental data �20� and it is given by

� =
�e�1 − p��Ve

� − 1
, �� = 2�0

1 + �

�
, �28�

where �0 is a collective relaxation time introduced in the
kinetic method �10� which must be greater than the indi-
vidual relaxation time �; lastly, Ve is related to the density �
through the fundamental diagram given phenomenologically
as usual �see Eq. �25��.

Now the equation of motion is written in terms of the
variable � as defined in Eq. �5� and the result is written as in
Eq. �8�. When we substitute the dimensionless variables as
defined in Eq. �9� and the dimensionless times Tc
=���maxVmax, Ti=��maxVmax, we can write the complete
equation for the velocity as

d2v�z�
dz2 − 
��v�z� + vg�

Tcv
2�z�

−
�1 − p�qg

v�z� + vg
+

v�z� + 2vg

v�z��v�z� + vg��dv�z�
dz

+
v�z� + 2vg

v�z��v�z� + vg�
dv�z�
dz

�2

+
��� − 1�
TcTiv�z�

−
�1 − p�qg

Tc�v�z� + vg�

= 0. �29�

We can identify the functions in the system given in Eqs.
�11�,

�1�v;vg,qg� =
��v + vg�

Tcv
2 −

�1 − p�qg

v + vg
+

v + 2vg

Tcv�v + vg�
,

�30�

�2�v;vg,qg� = −
v + 2vg

v�v + vg�
, �31�

f�v;vg,qg� =
�1 − p�qg

Tc�v + vg�
−

��� − 1�
TcTiv

, �32�

and the coordinates of the critical points can be found with
the condition f�v ;vg ,qg�=0. In the calculation of the critical
points, it is important to notice that f depends on the param-
eters in the model through � which is given in Eq. �28� and
in terms of the fundamental diagram Ve�V�, in such a way
that we can eliminate the parameter �. The result of this
procedure allows us to write the force in the following man-
ner:

f�v;vg,qg� =
�1 − p�qg

Tc�v + vg�
�1 −

ve�v�
v

� . �33�

In this equation it is clear that the force vanishes when Eq.
�23� is satisfied. As a result we obtain that the critical points
in this model are given by the same condition as in the

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

v

y

FIG. 6. �Color online� Orbits for qg=0.107 and vg=−0.166.
There are two unstable critical points whose values are listed in the
fifth row of Table I.
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Kerner-Konhäuser model; this means that in both models the
critical points are the same.

The quantity f�v ;vg ,qg� represents the force per unit mass
in the analogy with the motion of a particle, and we notice
here that the force in both models is not the same, although
the points where it vanishes coincide. In fact, in the kinetic
Navier-Stokes-like model the force depends on the probabil-
ity of overtaking �1− p� which can be taken from experimen-
tal data; here we will take it as �1− p�= �

�max
=

qg

v+vg
, a factor

which is not present in the Kerner-Konhäuser model. It is
worth noticing that the stability analysis around the critical
points is a linear one, which means that the nonlinear term
with respect to y present in this model, which is proportional
to �2�v ;vg ,qg�, does not play any role. The results coming
from the linear analysis are valid only in a neighborhood of
each critical point, and they do not give a definite answer
about the global stability in the system. The construction of
orbits in phase space as well as the simulation results de-
pends on �2 in an explicit and important way.

In Table II we show some examples of values for the

critical points, their stability, the characteristics of the poten-
tial, and the sign of the Stokes friction term. The first two
rows correspond to qg�0 and vg�0. In both cases there are
three critical points but unlike the Kerner-Kornhäuser model,
none of them are stable for this model; v0 and v2 correspond
to maximums of the potential and are saddle points while
point v1 corresponds to a minimum in the potential and it is
an unstable node. Consistently with the analysis in terms of
the energy rate we found that �1 evaluated in v1 is positive.
In the case where qg�0 and vg�0, there are only two criti-
cal points after the singularity of the force v� �vg�, as it
occurred in the Kerner-Konhäuser model. The orbits in phase
space can be constructed with the complete solution of the
dynamical system given through Eqs. �11� and �30� and tak-
ing specific values for vg ,qg. In this case the relaxation times
are taken as �=30 s and ��

� =10. The value for the quotient in
relaxation times deserves some comments; first of all we
recall that � is an individual relaxation time which measures
the individual disposition of drivers. Second, the collective
relaxation time �� represents an average collective time,
which in the development of the model has been taken as

TABLE II. Examples of critical values in the Navier-Stokes-like model. The meaning of each row is the
same as in Table I.

qg Qg vg Vg v0 V0 v1 V1 v2 V2

0.0952 0.1 4.57
10−6 0.1789 0.9327

1600 veh/h 12 km/h 5.84
10−4 km /h 21.46 km/h 111.92 km/h

saddle point unstable node saddle point

maximum minimum maximum

�1�0 �1�0 �1�0

0.15 0.21 4.3
10−4 0.2783 0.8624

2520 veh/h 25.2 km/h 0.052 km/h 33.4 km/h 103.49 km/h

saddle point unstable node saddle point

maximum minimum maximum

�1�0 �1�0 �1�0

0.0952 −0.1 0.4702 0.8984

1600 veh/h −12 km /h 56.42 km/h 107.80 km/h

stable spiral saddle point

minimum maximum

�1�0 �1�0

0.1072 −0.1 0.55095 0.86004

1800 veh/h −12 km /h 66.14 km/h 103.21 km/h

stable spiral saddle point

minimum maximum

�1�0 �1�0

0.119 −0.1 0.68555 0.7663

2000 veh/h −12 km /h 82.27 km/h 91.96 km/h

unstable spiral saddle point

minimum maximum

�1�0 �1�0
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greater than the individual relaxation time. Third, we have
found that the quotient between relaxation times plays an
important role in the stability of system. In fact, if we choose
a small quotient ��1�, we do not obtain critical points and
the simulation of the model for usual initial conditions can-
not be obtained. As an additional remark, recently it was
shown by means of the usual Chapman-Enskog expansion in
the reduced Paveri-Fontana equation that the collective re-
laxation time can be determined in terms of the � value and
� by means of the expression �0= �

2��−1� �21�. In this case the
quotient is always greater than 1 and near 10, as we are
choosing.

Also, it is important to mention that the scale of the values
for the derivative in the velocity as well as the values for the
force are different when compared with the corresponding
terms in the Kerner-Konhäuser model. This characteristic
makes the construction of orbits in phase space somewhat
difficult to present in graphics mainly for the data in the first
and the second rows in Table II, which correspond to values
qg�0, vg�0; however, when we have qg�0, vg�0 we can
observe the two critical points. Those are located in y=0 as it
should be; according to the values in vg, we see that the
critical values become closer to each other. This feature is
seen in Figs. 7 and 8; besides in these figures we can see that
point v1 corresponds to a stable spiral whereas in Fig. 9 the
critical point v1 is an unstable spiral. In this case it is impor-
tant to notice that the value qg plays the role of a bifurcation
parameter in the system. When the qg value grows there are
not critical points. So far, we have not found a limit cycle as
it happened in the Kerner-Konhäuser model. It means that, in
this model, either we do not have one limit cycle or it is in a
different region in phase space.

V. CONCLUDING REMARKS

The study of steady states in traffic flow is a problem of
great importance in the dynamics of such systems. First we
wonder if the homogeneous steady states, which are apparent
in traffic flow, are stable or unstable. Besides, nonhomoge-
neous steady states may appear in real traffic, for example,
we can think in synchronized flow or wide jams as a kind of

steady states. This is a question which to our knowledge has
not a definite answer. On the other hand, from the point of
view of macroscopic models, we can ask ourselves if those
models present stable nonhomogeneous steady states. In the
search of such steady states the first step to be done is a
systematic study of typical models in which we can solve
some of the questions we have just asked. In the literature
�8–12� there has been some interest in this subject; in par-
ticular �8� introduced the appropriate methodology while Lee
et al. �12� applied it to study the steady states for an optimal
velocity model.

The models we have developed in this work share the
same structure as the ones indicated previously and in both
cases the analogy with the motion of a particle gives an
interpretation of quantities containing the traffic model pa-
rameters. In fact, both models can be described in terms of a
particle submerged in a potential field with friction forces; in
the Kerner-Konhäuser model we have a linear friction term
with respect to y, while in the kinetic Navier-Stokes model
we also have a nonlinear friction term. It is a remarkable
property that in both models the critical points are the same,
meaning that the homogeneous steady states are also the
same. Just to be precise, for a given set of values vg ,qg those
critical points in the dynamical system are fixed in phase
space. Hence, the velocity v and its derivative y are fixed;
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FIG. 7. �Color online� Orbits for the kinetic Navier-Stokes-like
model for qg=0.0952 and vg=−0.1. There are two critical points
whose values are listed in the third row of Table II. The first one is
a stable spiral while the second one is a saddle point.
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FIG. 8. �Color online� Orbits in phase plane for qg=0.1072 and
vg=−0.1. There are two critical points whose values appear in the
fourth row of Table II. The first one is a stable spiral while the other
is a saddle point.
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FIG. 9. �Color online� Orbits in phase plane for qg=0.119 and
vg=−0.1. There are two unstable critical points whose values ap-
pear in the fifth row of Table II.
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consequently, in these states the density � has also a fixed
value, all of them being constant in position and time along
the highway. On the other hand, the states near those critical
points correspond to traffic states tending to homogeneous
steady state in the case of a stable critical point; otherwise,
they go far apart. In the context of the particle motion, sta-
bility is obtained when the total energy of the particle is
dissipated by friction and this is given by the sign of �1. The
unstable case can be obtained near a maximum in the poten-
tial and when there are some factors which make that energy
grows. Also, a stable state can become unstable if we have an
overload in the total energy. The potential field in the mac-
roscopic models depends on the fundamental diagram; in our
case the fundamental diagram chosen drives to a potential
with three, two, or one critical point, although there are cases
where the critical points do not exist. Accordingly, in the
case of three critical points we have obtained two maximums
and one minimum for vg�0, qg�0; a negative sign in the
friction coefficient �1 drives to energy dissipation and we
can see that stable points correspond to a negative coeffi-
cient. Saddle points are associated with positive friction co-
efficient, a characteristic which is consistent with the de-
scription of the particle motion.

When we choose qg�0, vg�0 there exists a discontinu-
ity in the functions; however, it is possible to analyze the
dynamical system in a region where the continuity of func-
tions is present. The potential field in this case has two criti-
cal points; in the Kerner-Konhäuser model the minimum can
be stable or unstable, depending on the sign of �1, while the
maximums are unstable. It is worth noticing that the stability
of a critical point depends on both factors the characteristics
of the potential and the friction coefficient. The values of qg
and vg play the role of bifurcation parameters in the system.
Also, notice that the sign in the friction coefficient corre-
sponds to the qualitative picture we just mentioned above. In
fact, this case corresponds to the one analyzed by Kerner and
Konhäuser �8� to study the formation of clusters in a closed
road. This is also the case in the kinetic Navier-Stokes
model.

In our work we have constructed explicitly the orbits in
phase space for several cases. It is particularly important that

we have found signs of the presence of limit cycles in phase
space. They appear for some values of vg ,qg and the friction
coefficient �1�0 as it should be. Also, in the work of Lee et
al. �12� the limit cycles can appear for some values of the
parameters; in this sense we have found numerically certain
properties similar to their case. It must be noted that in our
work the orbits in phase space are calculated numerically and
they correspond to some qualitative cases as reported by Lee
et al. The values we have chosen to calculate the orbits cor-
respond to the free traffic region in the fundamental diagram.
When we compared with the work of Lee et al. we found
that they were working in a region different than ours; their
region corresponds to bigger values for qg and vg, making
the quantitative comparison a nonsense work.

As another piece of the conclusions of our work we can
make a comparison between the two macroscopic models we
have worked out. First of all, both models share the structure
in the equations of motion, and the critical points are the
same. It is not the case with respect to the values of the
potential field, the force, the stability of the critical points,
and of course the orbits in phase space. Let us now go into
the discussion of the details; the Kerner-Konhäuser model is
a phenomenological one in which the parameters such as the
viscosity and the variance are chosen arbitrarily, whereas the
kinetic Navier-Stokes model is based on a kinetic equation. It
has only one free parameter which is called the collective
relaxation time; however, the viscosity and the variance are
determined by the dynamics. The validity region for each
model is different; the first model can be applied for any
value of the density, whereas in the second the density must
be in a dilute region. This fact was the cause to choose the
analysis in the free traffic regime. The second model presents
unstable critical points except in the case where we have
qg�0, vg�0; however, the stable critical point occurs for
velocity values near the maximum velocity. It is worth men-
tioning that the simulation of both models can be done; the
results converge and they present a kind of permanent pro-
files in the density and the velocity. Certainly, the resulting
profiles look different but in both cases they have the general
characteristics of traffic flow.
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